eol style

git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/branches/ZeroRadiant.ab@184 8a3a26a2-13c4-0310-b231-cf6edde360e5
This commit is contained in:
TTimo
2007-11-04 03:47:06 +00:00
parent d59e1dc131
commit ab3a99dbbe
475 changed files with 193668 additions and 193668 deletions

View File

@@ -1,391 +1,391 @@
/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "mathlib.h"
void aabb_construct_for_vec3(aabb_t *aabb, const vec3_t min, const vec3_t max)
{
VectorMid(min, max, aabb->origin);
VectorSubtract(max, aabb->origin, aabb->extents);
}
void aabb_update_radius(aabb_t *aabb)
{
aabb->radius = VectorLength(aabb->extents);
}
void aabb_clear(aabb_t *aabb)
{
aabb->origin[0] = aabb->origin[1] = aabb->origin[2] = 0;
aabb->extents[0] = aabb->extents[1] = aabb->extents[2] = -FLT_MAX;
}
void aabb_extend_by_point(aabb_t *aabb, const vec3_t point)
{
int i;
vec_t min, max, displacement;
for(i=0; i<3; i++)
{
displacement = point[i] - aabb->origin[i];
if(fabs(displacement) > aabb->extents[i])
{
if(aabb->extents[i] < 0) // degenerate
{
min = max = point[i];
}
else if(displacement > 0)
{
min = aabb->origin[i] - aabb->extents[i];
max = aabb->origin[i] + displacement;
}
else
{
max = aabb->origin[i] + aabb->extents[i];
min = aabb->origin[i] + displacement;
}
aabb->origin[i] = (min + max) * 0.5f;
aabb->extents[i] = max - aabb->origin[i];
}
}
}
void aabb_extend_by_aabb(aabb_t *aabb, const aabb_t *aabb_src)
{
int i;
vec_t min, max, displacement, difference;
for(i=0; i<3; i++)
{
displacement = aabb_src->origin[i] - aabb->origin[i];
difference = aabb_src->extents[i] - aabb->extents[i];
if(aabb->extents[i] < 0
|| difference >= fabs(displacement))
{
// 2nd contains 1st
aabb->extents[i] = aabb_src->extents[i];
aabb->origin[i] = aabb_src->origin[i];
}
else if(aabb_src->extents[i] < 0
|| -difference >= fabs(displacement))
{
// 1st contains 2nd
continue;
}
else
{
// not contained
if(displacement > 0)
{
min = aabb->origin[i] - aabb->extents[i];
max = aabb_src->origin[i] + aabb_src->extents[i];
}
else
{
min = aabb_src->origin[i] - aabb_src->extents[i];
max = aabb->origin[i] + aabb->extents[i];
}
aabb->origin[i] = (min + max) * 0.5f;
aabb->extents[i] = max - aabb->origin[i];
}
}
}
void aabb_extend_by_vec3(aabb_t *aabb, vec3_t extension)
{
VectorAdd(aabb->extents, extension, aabb->extents);
}
int aabb_intersect_point(const aabb_t *aabb, const vec3_t point)
{
int i;
for(i=0; i<3; i++)
if(fabs(point[i] - aabb->origin[i]) >= aabb->extents[i])
return 0;
return 1;
}
int aabb_intersect_aabb(const aabb_t *aabb, const aabb_t *aabb_src)
{
int i;
for (i=0; i<3; i++)
if ( fabs(aabb_src->origin[i] - aabb->origin[i]) > (fabs(aabb->extents[i]) + fabs(aabb_src->extents[i])) )
return 0;
return 1;
}
int aabb_intersect_plane(const aabb_t *aabb, const float *plane)
{
float fDist, fIntersect;
// calc distance of origin from plane
fDist = DotProduct(plane, aabb->origin) + plane[3];
// trivial accept/reject using bounding sphere
if (fabs(fDist) > aabb->radius)
{
if (fDist < 0)
return 2; // totally inside
else
return 0; // totally outside
}
// calc extents distance relative to plane normal
fIntersect = (vec_t)(fabs(plane[0] * aabb->extents[0]) + fabs(plane[1] * aabb->extents[1]) + fabs(plane[2] * aabb->extents[2]));
// accept if origin is less than or equal to this distance
if (fabs(fDist) < fIntersect) return 1; // partially inside
else if (fDist < 0) return 2; // totally inside
return 0; // totally outside
}
/*
Fast Ray-Box Intersection
by Andrew Woo
from "Graphics Gems", Academic Press, 1990
*/
#define NUMDIM 3
#define RIGHT 0
#define LEFT 1
#define MIDDLE 2
int aabb_intersect_ray(const aabb_t *aabb, const ray_t *ray, vec_t *dist)
{
int inside = 1;
char quadrant[NUMDIM];
register int i;
int whichPlane;
double maxT[NUMDIM];
double candidatePlane[NUMDIM];
vec3_t coord, segment;
const float *origin = ray->origin;
const float *direction = ray->direction;
/* Find candidate planes; this loop can be avoided if
rays cast all from the eye(assume perpsective view) */
for (i=0; i<NUMDIM; i++)
{
if(origin[i] < (aabb->origin[i] - aabb->extents[i]))
{
quadrant[i] = LEFT;
candidatePlane[i] = (aabb->origin[i] - aabb->extents[i]);
inside = 0;
}
else if (origin[i] > (aabb->origin[i] + aabb->extents[i]))
{
quadrant[i] = RIGHT;
candidatePlane[i] = (aabb->origin[i] + aabb->extents[i]);
inside = 0;
}
else
{
quadrant[i] = MIDDLE;
}
}
/* Ray origin inside bounding box */
if(inside == 1)
{
*dist = 0.0f;
return 1;
}
/* Calculate T distances to candidate planes */
for (i = 0; i < NUMDIM; i++)
{
if (quadrant[i] != MIDDLE && direction[i] !=0.)
maxT[i] = (candidatePlane[i] - origin[i]) / direction[i];
else
maxT[i] = -1.;
}
/* Get largest of the maxT's for final choice of intersection */
whichPlane = 0;
for (i = 1; i < NUMDIM; i++)
if (maxT[whichPlane] < maxT[i])
whichPlane = i;
/* Check final candidate actually inside box */
if (maxT[whichPlane] < 0.)
return 0;
for (i = 0; i < NUMDIM; i++)
{
if (whichPlane != i)
{
coord[i] = (vec_t)(origin[i] + maxT[whichPlane] * direction[i]);
if (fabs(coord[i] - aabb->origin[i]) > aabb->extents[i])
return 0;
}
else
{
coord[i] = (vec_t)candidatePlane[i];
}
}
VectorSubtract(coord, origin, segment);
*dist = DotProduct(segment, direction);
return 1; /* ray hits box */
}
int aabb_test_ray(const aabb_t* aabb, const ray_t* ray)
{
vec3_t displacement, ray_absolute;
vec_t f;
displacement[0] = ray->origin[0] - aabb->origin[0];
if(fabs(displacement[0]) > aabb->extents[0] && displacement[0] * ray->direction[0] >= 0.0f)
return 0;
displacement[1] = ray->origin[1] - aabb->origin[1];
if(fabs(displacement[1]) > aabb->extents[1] && displacement[1] * ray->direction[1] >= 0.0f)
return 0;
displacement[2] = ray->origin[2] - aabb->origin[2];
if(fabs(displacement[2]) > aabb->extents[2] && displacement[2] * ray->direction[2] >= 0.0f)
return 0;
ray_absolute[0] = (float)fabs(ray->direction[0]);
ray_absolute[1] = (float)fabs(ray->direction[1]);
ray_absolute[2] = (float)fabs(ray->direction[2]);
f = ray->direction[1] * displacement[2] - ray->direction[2] * displacement[1];
if((float)fabs(f) > aabb->extents[1] * ray_absolute[2] + aabb->extents[2] * ray_absolute[1])
return 0;
f = ray->direction[2] * displacement[0] - ray->direction[0] * displacement[2];
if((float)fabs(f) > aabb->extents[0] * ray_absolute[2] + aabb->extents[2] * ray_absolute[0])
return 0;
f = ray->direction[0] * displacement[1] - ray->direction[1] * displacement[0];
if((float)fabs(f) > aabb->extents[0] * ray_absolute[1] + aabb->extents[1] * ray_absolute[0])
return 0;
return 1;
}
void aabb_for_bbox(aabb_t *aabb, const bbox_t *bbox)
{
int i;
vec3_t temp[3];
VectorCopy(bbox->aabb.origin, aabb->origin);
// calculate the AABB extents in local coord space from the OBB extents and axes
VectorScale(bbox->axes[0], bbox->aabb.extents[0], temp[0]);
VectorScale(bbox->axes[1], bbox->aabb.extents[1], temp[1]);
VectorScale(bbox->axes[2], bbox->aabb.extents[2], temp[2]);
for(i=0;i<3;i++) aabb->extents[i] = (vec_t)(fabs(temp[0][i]) + fabs(temp[1][i]) + fabs(temp[2][i]));
}
void aabb_for_area(aabb_t *aabb, vec3_t area_tl, vec3_t area_br, int axis)
{
aabb_clear(aabb);
aabb->extents[axis] = FLT_MAX;
aabb_extend_by_point(aabb, area_tl);
aabb_extend_by_point(aabb, area_br);
}
void aabb_for_transformed_aabb(aabb_t* dst, const aabb_t* src, const m4x4_t transform)
{
VectorCopy(src->origin, dst->origin);
m4x4_transform_point(transform, dst->origin);
dst->extents[0] = (vec_t)(fabs(transform[0] * src->extents[0])
+ fabs(transform[4] * src->extents[1])
+ fabs(transform[8] * src->extents[2]));
dst->extents[1] = (vec_t)(fabs(transform[1] * src->extents[0])
+ fabs(transform[5] * src->extents[1])
+ fabs(transform[9] * src->extents[2]));
dst->extents[2] = (vec_t)(fabs(transform[2] * src->extents[0])
+ fabs(transform[6] * src->extents[1])
+ fabs(transform[10] * src->extents[2]));
}
void bbox_for_oriented_aabb(bbox_t *bbox, const aabb_t *aabb, const m4x4_t matrix, const vec3_t euler, const vec3_t scale)
{
double rad[3];
double pi_180 = Q_PI / 180;
double A, B, C, D, E, F, AD, BD;
VectorCopy(aabb->origin, bbox->aabb.origin);
m4x4_transform_point(matrix, bbox->aabb.origin);
bbox->aabb.extents[0] = aabb->extents[0] * scale[0];
bbox->aabb.extents[1] = aabb->extents[1] * scale[1];
bbox->aabb.extents[2] = aabb->extents[2] * scale[2];
rad[0] = euler[0] * pi_180;
rad[1] = euler[1] * pi_180;
rad[2] = euler[2] * pi_180;
A = cos(rad[0]);
B = sin(rad[0]);
C = cos(rad[1]);
D = sin(rad[1]);
E = cos(rad[2]);
F = sin(rad[2]);
AD = A * -D;
BD = B * -D;
bbox->axes[0][0] = (vec_t)(C*E);
bbox->axes[0][1] = (vec_t)(-BD*E + A*F);
bbox->axes[0][2] = (vec_t)(AD*E + B*F);
bbox->axes[1][0] = (vec_t)(-C*F);
bbox->axes[1][1] = (vec_t)(BD*F + A*E);
bbox->axes[1][2] = (vec_t)(-AD*F + B*E);
bbox->axes[2][0] = (vec_t)D;
bbox->axes[2][1] = (vec_t)(-B*C);
bbox->axes[2][2] = (vec_t)(A*C);
aabb_update_radius(&bbox->aabb);
}
int bbox_intersect_plane(const bbox_t *bbox, const vec_t* plane)
{
vec_t fDist, fIntersect;
// calc distance of origin from plane
fDist = DotProduct(plane, bbox->aabb.origin) + plane[3];
// trivial accept/reject using bounding sphere
if (fabs(fDist) > bbox->aabb.radius)
{
if (fDist < 0)
return 2; // totally inside
else
return 0; // totally outside
}
// calc extents distance relative to plane normal
fIntersect = (vec_t)(fabs(bbox->aabb.extents[0] * DotProduct(plane, bbox->axes[0]))
+ fabs(bbox->aabb.extents[1] * DotProduct(plane, bbox->axes[1]))
+ fabs(bbox->aabb.extents[2] * DotProduct(plane, bbox->axes[2])));
// accept if origin is less than this distance
if (fabs(fDist) < fIntersect) return 1; // partially inside
else if (fDist < 0) return 2; // totally inside
return 0; // totally outside
}
/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "mathlib.h"
void aabb_construct_for_vec3(aabb_t *aabb, const vec3_t min, const vec3_t max)
{
VectorMid(min, max, aabb->origin);
VectorSubtract(max, aabb->origin, aabb->extents);
}
void aabb_update_radius(aabb_t *aabb)
{
aabb->radius = VectorLength(aabb->extents);
}
void aabb_clear(aabb_t *aabb)
{
aabb->origin[0] = aabb->origin[1] = aabb->origin[2] = 0;
aabb->extents[0] = aabb->extents[1] = aabb->extents[2] = -FLT_MAX;
}
void aabb_extend_by_point(aabb_t *aabb, const vec3_t point)
{
int i;
vec_t min, max, displacement;
for(i=0; i<3; i++)
{
displacement = point[i] - aabb->origin[i];
if(fabs(displacement) > aabb->extents[i])
{
if(aabb->extents[i] < 0) // degenerate
{
min = max = point[i];
}
else if(displacement > 0)
{
min = aabb->origin[i] - aabb->extents[i];
max = aabb->origin[i] + displacement;
}
else
{
max = aabb->origin[i] + aabb->extents[i];
min = aabb->origin[i] + displacement;
}
aabb->origin[i] = (min + max) * 0.5f;
aabb->extents[i] = max - aabb->origin[i];
}
}
}
void aabb_extend_by_aabb(aabb_t *aabb, const aabb_t *aabb_src)
{
int i;
vec_t min, max, displacement, difference;
for(i=0; i<3; i++)
{
displacement = aabb_src->origin[i] - aabb->origin[i];
difference = aabb_src->extents[i] - aabb->extents[i];
if(aabb->extents[i] < 0
|| difference >= fabs(displacement))
{
// 2nd contains 1st
aabb->extents[i] = aabb_src->extents[i];
aabb->origin[i] = aabb_src->origin[i];
}
else if(aabb_src->extents[i] < 0
|| -difference >= fabs(displacement))
{
// 1st contains 2nd
continue;
}
else
{
// not contained
if(displacement > 0)
{
min = aabb->origin[i] - aabb->extents[i];
max = aabb_src->origin[i] + aabb_src->extents[i];
}
else
{
min = aabb_src->origin[i] - aabb_src->extents[i];
max = aabb->origin[i] + aabb->extents[i];
}
aabb->origin[i] = (min + max) * 0.5f;
aabb->extents[i] = max - aabb->origin[i];
}
}
}
void aabb_extend_by_vec3(aabb_t *aabb, vec3_t extension)
{
VectorAdd(aabb->extents, extension, aabb->extents);
}
int aabb_intersect_point(const aabb_t *aabb, const vec3_t point)
{
int i;
for(i=0; i<3; i++)
if(fabs(point[i] - aabb->origin[i]) >= aabb->extents[i])
return 0;
return 1;
}
int aabb_intersect_aabb(const aabb_t *aabb, const aabb_t *aabb_src)
{
int i;
for (i=0; i<3; i++)
if ( fabs(aabb_src->origin[i] - aabb->origin[i]) > (fabs(aabb->extents[i]) + fabs(aabb_src->extents[i])) )
return 0;
return 1;
}
int aabb_intersect_plane(const aabb_t *aabb, const float *plane)
{
float fDist, fIntersect;
// calc distance of origin from plane
fDist = DotProduct(plane, aabb->origin) + plane[3];
// trivial accept/reject using bounding sphere
if (fabs(fDist) > aabb->radius)
{
if (fDist < 0)
return 2; // totally inside
else
return 0; // totally outside
}
// calc extents distance relative to plane normal
fIntersect = (vec_t)(fabs(plane[0] * aabb->extents[0]) + fabs(plane[1] * aabb->extents[1]) + fabs(plane[2] * aabb->extents[2]));
// accept if origin is less than or equal to this distance
if (fabs(fDist) < fIntersect) return 1; // partially inside
else if (fDist < 0) return 2; // totally inside
return 0; // totally outside
}
/*
Fast Ray-Box Intersection
by Andrew Woo
from "Graphics Gems", Academic Press, 1990
*/
#define NUMDIM 3
#define RIGHT 0
#define LEFT 1
#define MIDDLE 2
int aabb_intersect_ray(const aabb_t *aabb, const ray_t *ray, vec_t *dist)
{
int inside = 1;
char quadrant[NUMDIM];
register int i;
int whichPlane;
double maxT[NUMDIM];
double candidatePlane[NUMDIM];
vec3_t coord, segment;
const float *origin = ray->origin;
const float *direction = ray->direction;
/* Find candidate planes; this loop can be avoided if
rays cast all from the eye(assume perpsective view) */
for (i=0; i<NUMDIM; i++)
{
if(origin[i] < (aabb->origin[i] - aabb->extents[i]))
{
quadrant[i] = LEFT;
candidatePlane[i] = (aabb->origin[i] - aabb->extents[i]);
inside = 0;
}
else if (origin[i] > (aabb->origin[i] + aabb->extents[i]))
{
quadrant[i] = RIGHT;
candidatePlane[i] = (aabb->origin[i] + aabb->extents[i]);
inside = 0;
}
else
{
quadrant[i] = MIDDLE;
}
}
/* Ray origin inside bounding box */
if(inside == 1)
{
*dist = 0.0f;
return 1;
}
/* Calculate T distances to candidate planes */
for (i = 0; i < NUMDIM; i++)
{
if (quadrant[i] != MIDDLE && direction[i] !=0.)
maxT[i] = (candidatePlane[i] - origin[i]) / direction[i];
else
maxT[i] = -1.;
}
/* Get largest of the maxT's for final choice of intersection */
whichPlane = 0;
for (i = 1; i < NUMDIM; i++)
if (maxT[whichPlane] < maxT[i])
whichPlane = i;
/* Check final candidate actually inside box */
if (maxT[whichPlane] < 0.)
return 0;
for (i = 0; i < NUMDIM; i++)
{
if (whichPlane != i)
{
coord[i] = (vec_t)(origin[i] + maxT[whichPlane] * direction[i]);
if (fabs(coord[i] - aabb->origin[i]) > aabb->extents[i])
return 0;
}
else
{
coord[i] = (vec_t)candidatePlane[i];
}
}
VectorSubtract(coord, origin, segment);
*dist = DotProduct(segment, direction);
return 1; /* ray hits box */
}
int aabb_test_ray(const aabb_t* aabb, const ray_t* ray)
{
vec3_t displacement, ray_absolute;
vec_t f;
displacement[0] = ray->origin[0] - aabb->origin[0];
if(fabs(displacement[0]) > aabb->extents[0] && displacement[0] * ray->direction[0] >= 0.0f)
return 0;
displacement[1] = ray->origin[1] - aabb->origin[1];
if(fabs(displacement[1]) > aabb->extents[1] && displacement[1] * ray->direction[1] >= 0.0f)
return 0;
displacement[2] = ray->origin[2] - aabb->origin[2];
if(fabs(displacement[2]) > aabb->extents[2] && displacement[2] * ray->direction[2] >= 0.0f)
return 0;
ray_absolute[0] = (float)fabs(ray->direction[0]);
ray_absolute[1] = (float)fabs(ray->direction[1]);
ray_absolute[2] = (float)fabs(ray->direction[2]);
f = ray->direction[1] * displacement[2] - ray->direction[2] * displacement[1];
if((float)fabs(f) > aabb->extents[1] * ray_absolute[2] + aabb->extents[2] * ray_absolute[1])
return 0;
f = ray->direction[2] * displacement[0] - ray->direction[0] * displacement[2];
if((float)fabs(f) > aabb->extents[0] * ray_absolute[2] + aabb->extents[2] * ray_absolute[0])
return 0;
f = ray->direction[0] * displacement[1] - ray->direction[1] * displacement[0];
if((float)fabs(f) > aabb->extents[0] * ray_absolute[1] + aabb->extents[1] * ray_absolute[0])
return 0;
return 1;
}
void aabb_for_bbox(aabb_t *aabb, const bbox_t *bbox)
{
int i;
vec3_t temp[3];
VectorCopy(bbox->aabb.origin, aabb->origin);
// calculate the AABB extents in local coord space from the OBB extents and axes
VectorScale(bbox->axes[0], bbox->aabb.extents[0], temp[0]);
VectorScale(bbox->axes[1], bbox->aabb.extents[1], temp[1]);
VectorScale(bbox->axes[2], bbox->aabb.extents[2], temp[2]);
for(i=0;i<3;i++) aabb->extents[i] = (vec_t)(fabs(temp[0][i]) + fabs(temp[1][i]) + fabs(temp[2][i]));
}
void aabb_for_area(aabb_t *aabb, vec3_t area_tl, vec3_t area_br, int axis)
{
aabb_clear(aabb);
aabb->extents[axis] = FLT_MAX;
aabb_extend_by_point(aabb, area_tl);
aabb_extend_by_point(aabb, area_br);
}
void aabb_for_transformed_aabb(aabb_t* dst, const aabb_t* src, const m4x4_t transform)
{
VectorCopy(src->origin, dst->origin);
m4x4_transform_point(transform, dst->origin);
dst->extents[0] = (vec_t)(fabs(transform[0] * src->extents[0])
+ fabs(transform[4] * src->extents[1])
+ fabs(transform[8] * src->extents[2]));
dst->extents[1] = (vec_t)(fabs(transform[1] * src->extents[0])
+ fabs(transform[5] * src->extents[1])
+ fabs(transform[9] * src->extents[2]));
dst->extents[2] = (vec_t)(fabs(transform[2] * src->extents[0])
+ fabs(transform[6] * src->extents[1])
+ fabs(transform[10] * src->extents[2]));
}
void bbox_for_oriented_aabb(bbox_t *bbox, const aabb_t *aabb, const m4x4_t matrix, const vec3_t euler, const vec3_t scale)
{
double rad[3];
double pi_180 = Q_PI / 180;
double A, B, C, D, E, F, AD, BD;
VectorCopy(aabb->origin, bbox->aabb.origin);
m4x4_transform_point(matrix, bbox->aabb.origin);
bbox->aabb.extents[0] = aabb->extents[0] * scale[0];
bbox->aabb.extents[1] = aabb->extents[1] * scale[1];
bbox->aabb.extents[2] = aabb->extents[2] * scale[2];
rad[0] = euler[0] * pi_180;
rad[1] = euler[1] * pi_180;
rad[2] = euler[2] * pi_180;
A = cos(rad[0]);
B = sin(rad[0]);
C = cos(rad[1]);
D = sin(rad[1]);
E = cos(rad[2]);
F = sin(rad[2]);
AD = A * -D;
BD = B * -D;
bbox->axes[0][0] = (vec_t)(C*E);
bbox->axes[0][1] = (vec_t)(-BD*E + A*F);
bbox->axes[0][2] = (vec_t)(AD*E + B*F);
bbox->axes[1][0] = (vec_t)(-C*F);
bbox->axes[1][1] = (vec_t)(BD*F + A*E);
bbox->axes[1][2] = (vec_t)(-AD*F + B*E);
bbox->axes[2][0] = (vec_t)D;
bbox->axes[2][1] = (vec_t)(-B*C);
bbox->axes[2][2] = (vec_t)(A*C);
aabb_update_radius(&bbox->aabb);
}
int bbox_intersect_plane(const bbox_t *bbox, const vec_t* plane)
{
vec_t fDist, fIntersect;
// calc distance of origin from plane
fDist = DotProduct(plane, bbox->aabb.origin) + plane[3];
// trivial accept/reject using bounding sphere
if (fabs(fDist) > bbox->aabb.radius)
{
if (fDist < 0)
return 2; // totally inside
else
return 0; // totally outside
}
// calc extents distance relative to plane normal
fIntersect = (vec_t)(fabs(bbox->aabb.extents[0] * DotProduct(plane, bbox->axes[0]))
+ fabs(bbox->aabb.extents[1] * DotProduct(plane, bbox->axes[1]))
+ fabs(bbox->aabb.extents[2] * DotProduct(plane, bbox->axes[2])));
// accept if origin is less than this distance
if (fabs(fDist) < fIntersect) return 1; // partially inside
else if (fDist < 0) return 2; // totally inside
return 0; // totally outside
}

View File

@@ -1,100 +1,100 @@
#ifndef __APPLE__
#include <malloc.h>
#else
#include <stdlib.h>
#endif
#include <limits.h>
#include <float.h>
#include "mathlib.h"
#define TINY FLT_MIN
void lubksb(float **a, int n, int *indx, float b[])
// Solves the set of n linear equations A.X=B. Here a[n][n] is input, not as the matrix
// A but rather as its LU decomposition determined by the routine ludcmp. indx[n] is input
// as the permutation vector returned by ludcmp. b[n] is input as the right-hand side vector
// B, and returns with the solution vector X. a, n and indx are not modified by this routine
// and can be left in place for successive calls with different right-hand sides b. This routine takes
// into account the possibility that b will begin with many zero elements, so it is efficient for use
// in matrix inversion
{
int i,ii=-1,ip,j;
float sum;
for (i=0;i<n;i++) {
ip=indx[i];
sum=b[ip];
b[ip]=b[i];
if (ii>=0)
for (j=ii;j<i;j++) sum -= a[i][j]*b[j];
else if (sum) ii=i;
b[i]=sum;
}
for (i=n-1;i>=0;i--) {
sum=b[i];
for (j=i+1;j<n;j++) sum -= a[i][j]*b[j];
b[i]=sum/a[i][i];
}
}
/* (C) Copr. 1986-92 Numerical Recipes Software */
int ludcmp(float **a, int n, int *indx, float *d)
// given a matrix a[n][n] this routine replaces it with the LU decomposition of a rowwise
// permutation of itself. a and n are input. a is output, arranged as in above equation;
// indx[n] is an output vector that records the row permutation effected by the partial
// pivoting; d is output as +/-1 depending on whether the number of row interchanges was even
// or odd, respectively. This routine is used in combination with lubksb to solve linear
// equations or invert a matrix.
{
int i,imax,j,k;
float big,dum,sum,temp;
float *vv;
vv=(float*)malloc(sizeof(float)*n);
*d=1.0;
for (i=0;i<n;i++) {
big=0.0;
for (j=0;j<n;j++)
if ((temp=(float)fabs(a[i][j])) > big) big=temp;
if (big == 0.0) return 1;
vv[i]=1.0f/big;
}
for (j=0;j<n;j++) {
for (i=0;i<j;i++) {
sum=a[i][j];
for (k=0;k<i;k++) sum -= a[i][k]*a[k][j];
a[i][j]=sum;
}
big=0.0;
for (i=j;i<n;i++) {
sum=a[i][j];
for (k=0;k<j;k++)
sum -= a[i][k]*a[k][j];
a[i][j]=sum;
if ( (dum=vv[i]*(float)fabs(sum)) >= big) {
big=dum;
imax=i;
}
}
if (j != imax) {
for (k=0;k<n;k++) {
dum=a[imax][k];
a[imax][k]=a[j][k];
a[j][k]=dum;
}
*d = -(*d);
vv[imax]=vv[j];
}
indx[j]=imax;
if (a[j][j] == 0.0) a[j][j]=TINY;
if (j != n) {
dum=1.0f/(a[j][j]);
for (i=j+1;i<n;i++) a[i][j] *= dum;
}
}
free(vv);
return 0;
}
/* (C) Copr. 1986-92 Numerical Recipes Software */
#ifndef __APPLE__
#include <malloc.h>
#else
#include <stdlib.h>
#endif
#include <limits.h>
#include <float.h>
#include "mathlib.h"
#define TINY FLT_MIN
void lubksb(float **a, int n, int *indx, float b[])
// Solves the set of n linear equations A.X=B. Here a[n][n] is input, not as the matrix
// A but rather as its LU decomposition determined by the routine ludcmp. indx[n] is input
// as the permutation vector returned by ludcmp. b[n] is input as the right-hand side vector
// B, and returns with the solution vector X. a, n and indx are not modified by this routine
// and can be left in place for successive calls with different right-hand sides b. This routine takes
// into account the possibility that b will begin with many zero elements, so it is efficient for use
// in matrix inversion
{
int i,ii=-1,ip,j;
float sum;
for (i=0;i<n;i++) {
ip=indx[i];
sum=b[ip];
b[ip]=b[i];
if (ii>=0)
for (j=ii;j<i;j++) sum -= a[i][j]*b[j];
else if (sum) ii=i;
b[i]=sum;
}
for (i=n-1;i>=0;i--) {
sum=b[i];
for (j=i+1;j<n;j++) sum -= a[i][j]*b[j];
b[i]=sum/a[i][i];
}
}
/* (C) Copr. 1986-92 Numerical Recipes Software */
int ludcmp(float **a, int n, int *indx, float *d)
// given a matrix a[n][n] this routine replaces it with the LU decomposition of a rowwise
// permutation of itself. a and n are input. a is output, arranged as in above equation;
// indx[n] is an output vector that records the row permutation effected by the partial
// pivoting; d is output as +/-1 depending on whether the number of row interchanges was even
// or odd, respectively. This routine is used in combination with lubksb to solve linear
// equations or invert a matrix.
{
int i,imax,j,k;
float big,dum,sum,temp;
float *vv;
vv=(float*)malloc(sizeof(float)*n);
*d=1.0;
for (i=0;i<n;i++) {
big=0.0;
for (j=0;j<n;j++)
if ((temp=(float)fabs(a[i][j])) > big) big=temp;
if (big == 0.0) return 1;
vv[i]=1.0f/big;
}
for (j=0;j<n;j++) {
for (i=0;i<j;i++) {
sum=a[i][j];
for (k=0;k<i;k++) sum -= a[i][k]*a[k][j];
a[i][j]=sum;
}
big=0.0;
for (i=j;i<n;i++) {
sum=a[i][j];
for (k=0;k<j;k++)
sum -= a[i][k]*a[k][j];
a[i][j]=sum;
if ( (dum=vv[i]*(float)fabs(sum)) >= big) {
big=dum;
imax=i;
}
}
if (j != imax) {
for (k=0;k<n;k++) {
dum=a[imax][k];
a[imax][k]=a[j][k];
a[j][k]=dum;
}
*d = -(*d);
vv[imax]=vv[j];
}
indx[j]=imax;
if (a[j][j] == 0.0) a[j][j]=TINY;
if (j != n) {
dum=1.0f/(a[j][j]);
for (i=j+1;i<n;i++) a[i][j] *= dum;
}
}
free(vv);
return 0;
}
/* (C) Copr. 1986-92 Numerical Recipes Software */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,135 +1,135 @@
/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "mathlib.h"
/*! for memcpy */
#include <memory.h>
vec3_t identity = { 0,0,0 };
void ray_construct_for_vec3(ray_t *ray, const vec3_t origin, const vec3_t direction)
{
VectorCopy(origin, ray->origin);
VectorCopy(direction, ray->direction);
}
void ray_transform(ray_t *ray, const m4x4_t matrix)
{
m4x4_transform_point(matrix, ray->origin);
m4x4_transform_normal(matrix, ray->direction);
}
vec_t ray_intersect_point(const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence)
{
vec3_t displacement;
vec_t depth;
// calc displacement of test point from ray origin
VectorSubtract(point, ray->origin, displacement);
// calc length of displacement vector along ray direction
depth = DotProduct(displacement, ray->direction);
if(depth < 0.0f) return (vec_t)VEC_MAX;
// calc position of closest point on ray to test point
VectorMA (ray->origin, depth, ray->direction, displacement);
// calc displacement of test point from closest point
VectorSubtract(point, displacement, displacement);
// calc length of displacement, subtract depth-dependant epsilon
if (VectorLength(displacement) - (epsilon + (depth * divergence)) > 0.0f) return (vec_t)VEC_MAX;
return depth;
}
// Tomas Moller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. Journal of graphics tools, 2(1):21-28, 1997
#define EPSILON 0.000001
vec_t ray_intersect_triangle(const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2)
{
float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
float det,inv_det;
float u, v;
vec_t depth = (vec_t)VEC_MAX;
/* find vectors for two edges sharing vert0 */
VectorSubtract(vert1, vert0, edge1);
VectorSubtract(vert2, vert0, edge2);
/* begin calculating determinant - also used to calculate U parameter */
CrossProduct(ray->direction, edge2, pvec);
/* if determinant is near zero, ray lies in plane of triangle */
det = DotProduct(edge1, pvec);
if (bCullBack == qtrue)
{
if (det < EPSILON)
return depth;
// calculate distance from vert0 to ray origin
VectorSubtract(ray->origin, vert0, tvec);
// calculate U parameter and test bounds
u = DotProduct(tvec, pvec);
if (u < 0.0 || u > det)
return depth;
// prepare to test V parameter
CrossProduct(tvec, edge1, qvec);
// calculate V parameter and test bounds
v = DotProduct(ray->direction, qvec);
if (v < 0.0 || u + v > det)
return depth;
// calculate t, scale parameters, ray intersects triangle
depth = DotProduct(edge2, qvec);
inv_det = 1.0f / det;
depth *= inv_det;
//u *= inv_det;
//v *= inv_det;
}
else
{
/* the non-culling branch */
if (det > -EPSILON && det < EPSILON)
return depth;
inv_det = 1.0f / det;
/* calculate distance from vert0 to ray origin */
VectorSubtract(ray->origin, vert0, tvec);
/* calculate U parameter and test bounds */
u = DotProduct(tvec, pvec) * inv_det;
if (u < 0.0 || u > 1.0)
return depth;
/* prepare to test V parameter */
CrossProduct(tvec, edge1, qvec);
/* calculate V parameter and test bounds */
v = DotProduct(ray->direction, qvec) * inv_det;
if (v < 0.0 || u + v > 1.0)
return depth;
/* calculate t, ray intersects triangle */
depth = DotProduct(edge2, qvec) * inv_det;
}
return depth;
}
/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "mathlib.h"
/*! for memcpy */
#include <memory.h>
vec3_t identity = { 0,0,0 };
void ray_construct_for_vec3(ray_t *ray, const vec3_t origin, const vec3_t direction)
{
VectorCopy(origin, ray->origin);
VectorCopy(direction, ray->direction);
}
void ray_transform(ray_t *ray, const m4x4_t matrix)
{
m4x4_transform_point(matrix, ray->origin);
m4x4_transform_normal(matrix, ray->direction);
}
vec_t ray_intersect_point(const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence)
{
vec3_t displacement;
vec_t depth;
// calc displacement of test point from ray origin
VectorSubtract(point, ray->origin, displacement);
// calc length of displacement vector along ray direction
depth = DotProduct(displacement, ray->direction);
if(depth < 0.0f) return (vec_t)VEC_MAX;
// calc position of closest point on ray to test point
VectorMA (ray->origin, depth, ray->direction, displacement);
// calc displacement of test point from closest point
VectorSubtract(point, displacement, displacement);
// calc length of displacement, subtract depth-dependant epsilon
if (VectorLength(displacement) - (epsilon + (depth * divergence)) > 0.0f) return (vec_t)VEC_MAX;
return depth;
}
// Tomas Moller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. Journal of graphics tools, 2(1):21-28, 1997
#define EPSILON 0.000001
vec_t ray_intersect_triangle(const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2)
{
float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
float det,inv_det;
float u, v;
vec_t depth = (vec_t)VEC_MAX;
/* find vectors for two edges sharing vert0 */
VectorSubtract(vert1, vert0, edge1);
VectorSubtract(vert2, vert0, edge2);
/* begin calculating determinant - also used to calculate U parameter */
CrossProduct(ray->direction, edge2, pvec);
/* if determinant is near zero, ray lies in plane of triangle */
det = DotProduct(edge1, pvec);
if (bCullBack == qtrue)
{
if (det < EPSILON)
return depth;
// calculate distance from vert0 to ray origin
VectorSubtract(ray->origin, vert0, tvec);
// calculate U parameter and test bounds
u = DotProduct(tvec, pvec);
if (u < 0.0 || u > det)
return depth;
// prepare to test V parameter
CrossProduct(tvec, edge1, qvec);
// calculate V parameter and test bounds
v = DotProduct(ray->direction, qvec);
if (v < 0.0 || u + v > det)
return depth;
// calculate t, scale parameters, ray intersects triangle
depth = DotProduct(edge2, qvec);
inv_det = 1.0f / det;
depth *= inv_det;
//u *= inv_det;
//v *= inv_det;
}
else
{
/* the non-culling branch */
if (det > -EPSILON && det < EPSILON)
return depth;
inv_det = 1.0f / det;
/* calculate distance from vert0 to ray origin */
VectorSubtract(ray->origin, vert0, tvec);
/* calculate U parameter and test bounds */
u = DotProduct(tvec, pvec) * inv_det;
if (u < 0.0 || u > 1.0)
return depth;
/* prepare to test V parameter */
CrossProduct(tvec, edge1, qvec);
/* calculate V parameter and test bounds */
v = DotProduct(ray->direction, qvec) * inv_det;
if (v < 0.0 || u + v > 1.0)
return depth;
/* calculate t, ray intersects triangle */
depth = DotProduct(edge2, qvec) * inv_det;
}
return depth;
}